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The steady sedimentation of a suspension over an inclined surface is analysed by 
considering the combined effects of settling hindrance, bulk motion and particle 
resuspension. The coupled momentum and mass balances suggest that a thin high- 
density sediment layer will form over the inclined surface, reminiscent of the thin 
thermal boundary layers in the classical problem of natural convection. It is shown 
that for a given value of the particle volume fraction in the unsettled suspension, a 
steady flow of the sediment can be maintained only if the angle of inclination exceeds 
a minimum value. The analysis further predicts the existence of a sharp discontinuity 
in the particle volume fraction across the suspension-sediment interface along which 
the bulk velocity has a local maximum. High particle volume fractions within the 
sediment are predicted when the unsettled suspension is either very dilute or very 
concentrated. This leads to the formation of relatively large sediment-layer 
thicknesses which reflect the fact that a large body force is required in these two 
limiting cases to overcome the viscous resistance to flow near the inclined boundary. 

1. Introduction 
The thickening of slurries and the separation between a particulate phase and the 

continuous fluid in which it is dispersed constitute one of the most common 
operations in industrial processes. Often, this is achieved using gravity settling, 
which is a relatively slow process when the particles are small and the fluid is viscous. 
Settlers are, therefore, large pieces of equipment which typically occupy a 
considerable area and hence it is desirable to be able to  scale down the size of settling 
tanks without reducing their operational capacity. One way of achieving such an 
enhancement in performance is by using devices which take advantage of the 
Boycott effect (Boycott 1920). Specifically, these vessels are equipped with a series 
of closely spaced inclined parallel plates which, as was pointed out by Ponder (1925) 
and by Nakamura & Kuroda (1937), greatly enhance the surface area for capturing 
the sedimenting particles with the result that the suspension is separated in a time 
much shorter than that required when the inclined surfaces are absent. This 
explanation for the enhancement, although kinematically correct in most practical 
cases, cannot account, however, for the convective currents which are observed along 
the underside of the inclined surfaces when the particles are heavier than the fluid or 
for the occurrence of waves along the suspension/clear-fluid interface. Hence the 
sedimentation between two inclined surfaces has become a fluid-mechanical 
phenomenon of both fundamental and practical interest. 
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During the past decade, a comprehensive theory has been developed based on the 
principles of continuum mechanics, which has succeeded in describing quantitatively 
the motion within the clear fluid layer and the adjoining suspension (the latter 
treated as an effective Newtonian fluid) for a wide range of parameters and operating 
conditions. The principal features of this theory as well as many of the major results 
are presented in the review by Davis & Acrivos (1985) and in the recent article by 
Borhan & Acrivos (1988) which also contain references to the earlier studies by a 
number of other investigators. 

The effectiveness of the entire sedimentation process also depends, however, on the 
dynamics of the sediment layer containing the settled particles. Specifically, the 
question of whether this heavy layer will remain stagnant and simply continue to 
grow in thickness along the top side of the inclined surface, or whether i t  will slide 
along freely, is interesting in itself but also has obviously practical implications since 
the conditions under which such a flow can exist will dictate the feasibility of 
operating such devices under steady-state conditions. Yet, this question has received 
little attention to date because, although a flowing sediment layer can often be 
observed in laboratory experiments, no known mechanism that could negate the 
tendency of the sedimentation process to compress the sediment layer and would, 
thereby, sustain such a motion had been recognized. Consequently, either the 
influence of this sediment layer was neglected or, in the rare instances when it was 
taken into account (cf. Probstein, Yung & Hicks 1981 ; Leung & Probstein 1983), it 
was treated as an effective fluid of a priori specified composition. 

Recently, a number of experimental studies (Gadala-Maria & Acrivos 1980; 
Leighton & Acrivos 1986, 1987a, b)  have led to the conclusion, however, that various 
curious phenomena which had been observed in sheared suspensions with high solid 
volume fractions, for example the slow variation in the measured effective viscosity 
in a Couette viscometer and the resuspension of a settled bed of particles into a clear 
fluid flowing above it under shear, were due to shear induced particle migration 
across bulk streamlines. This occurs because the motion of an individual particle is 
affected by its hydrodynamic interaction with the numerous particles surrounding i t  
which also interact with each other, with the result that the complex pattern of 
interactions combines to create a shear-induced diffusion and therefore particle 
migration that in turn affects the particle concentration distribution. Computer 
simulations of Stokesian dynamics (cf. Brady & Bossis 1988; Durlofsky & Brady 
1989) have also supported the above observations and confirmed that even in the 
absence of inertia effects a settled bed of particles will resuspend into a flowing fluid 
st,ream undergoing shear. 

Clearly, when a suspension in which particles are settling is in motion, the particle 
concentration is determined by a combination of the sedimentation rate, the bulk 
flow and the shear-induced diffusion. This distribution in turn influences the bulk 
properties such as the effective viscosity and density, thereby strongly affecting the 
bulk motion and the local value of the shear rate which induces particle migration. 
Thus, it would appear that the prediction of the motion of such concentrated 
suspensions should take into account the strong coupling that exists between the 
bulk characteristics of the flow and the migration of the settling particles on the 
microscale. In fact, using this approach, Schaflinger, Acrivos & Zhang (1989) have 
recently studied the forced flow in a channel and the gravity-driven film flow over an 
inclined surface of a suspension of settling particles, and by employing the 
resuspension model of Leighton & Acrivos (1986) established conditions under which 
such flows can exist in a steady state, i.e. the conditions under which the shear rate 
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distribution in the flowing suspension induces a resuspension which is sufficient to 
prevent the particles from settling further. 

In  this communication we shall present an analysis of the gravity-driven 
sedimentation of particles over an inclined surface and thereby address an aspect of 
particle settling in inclined vessels which, to date, appears to have been neglected. 
We shall anticipate that the heavy sediment layer will slide along the inclined surface 
in a manner similar to  the natural convective motion of a heated or cooled fluid layer, 
and shall seek to determine the conditions under which this motion can exist in a 
steady state. When this occurs, the combined effect of the settling rate and the shear- 
induced particle resuspension that is driven by the bulk motion of the sediment, 
creates a particle concentration distribution which sustains the macroscopic flow and 
prevents an accumulation of the sediment along the inclined surface. The general 
formulation of the problem is given in $2, while in $ 3 we examine a two-dimensional 
flow over an inclined flat plane. A similarity-type solution is developed in $ 4  for the 
case of a highly viscous sediment layer within which bulk inertia effects can be 
neglected. The results of this calculation are presented and discussed in $5  which 
focuses on the conditions for the existence of a steady-state solution to the relevant 
equations alluded to above. It is shown that, as expected, the physical parameters 
that may limit the range over which this steady flow can exist are the particle volume 
fraction in the bulk of the suspension and the angle of inclination. Questions 
regarding the stability of the motion of the sediment layer and the possible 
occurrence of secondary flows are not addressed and are left for further investigation. 

2. Formulation 
Consider an effectively infinite body of viscous fluid containing a dispersion of 

small solid particles which are sedimenting due to gravity. The particles are taken to 
be spherical, uniform in size with radius a and sufficiently small that inertia effects 
on the microscale are negligible. The settling particles encounter a surface of length 
L which is inclined at an angle a as depicted in figure 1. The solid volume fraction 
far from the surface is $s. We treat the suspension and the sediment layer as effective 
Newtonian fluids whose effective properties depend only on the local particle 
volume fraction, $, Thus the effective density and viscosity are given by 

(2.1) 

and P ( 4 )  = P * 4 $ ) ,  (2.2) 

where p, and p, are the density and the viscosity of the clear fluid, respectively, 
Ap = ps-pf with ps being the density of the particles, and A ( $ )  denotes the effective 
relative viscosity. In addition, we suppose that the particle slip velocity relative to 

(2.3) 
the bulk is 

where f ( $ )  is the so-called hindrance function and ut is the Stokes terminal 
sedimentation velocity for an isolated particle in a dilute suspension, i.e. 

u* = utf($)g/g 

2 ga2 A p  
U t  = -- 

9 Pf ’ 
with g = Igl being the gravitational acceleration. On the other hand, the shear- 
induced particle diffusion coefficient depends on both the local volume fraction and 
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FIGURE 1 .  A schematic description of sedimentation and sediment flow on an inclined surface. 

on the local flow field but dimensional analysis suggests that it should be linear in the 
bulk velocity gradient and hence, assuming that, to a first approximation, the 
diffusivity is isotropic, we express the shear-induced diffusion coefficient as (Leighton 
& Acrivos 1987 a ,  6) 

where lVul is the magnitude of the local gradient of the bulk velocity field, u,  and /3 
is a function which is assumed to depend only on #. The non-dimensional functions 
A ,  f and p are taken to be known and the explicit forms used in this analysis will be 
discussed in $5.  

2.1. Basic equations 
The momentum balance for the steady motion of the suspension has the familiar 
form 

P ( # )  u * v u  = v*g+ ( P ( # )  -Pr)g,  (2.6) 

with 0 = --pl+y(#) (Vu+Vu+) ,  ( 2 . 7 )  

D(#) = IVul Q”(#)> (2 .5 )  

where u,  CT and p are the bulk velocity, stress and pressure fields, respectively. Also, 
the last term in (2.6) denotes the effective body force, proportional to the local 
density difference, which generates the anticipated motion. In addition. in view of 
the incompressibility condition, V . u  = 0. 

The steady- state particle mass balance is given by 

u * V #  = - V * J ,  (2 .8)  

where the total flux J is a combination of the dispersive flux due to the ‘shear- 
induced diffusion effect ’ and of the sedimentation flux due to gravity. Hence 

J =  -DV#+u*#.  (2.9) 

Equations (2.6) and ( 2 . 8 )  can be rendered dimensionless using L and ut as the 
characteristic length and velocity respectively. Thus, incorporating the constant 
hydrostatic pressure associated with Ap&q into the stress field, the momentum and 
mass balances become 

L2g g (2.10) R Y ( @ ) U . V U  = V - t 7 + - ( $ - Q E ) y A p  
Pf ?Lt 
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and (2.1 1) 

with u,  Q and the position vector now denoting dimensionless variables and R = 

pf ut LIPu, being a macroscopic Reynolds number. The second dimensionless group in 
(2.10), having the familiar form of a Grashof number, can be further reduced using 
(2.4) to yield 

(2.12) gIJ2AP - !(E) = 93-2 
,.!LfUt 2 cL2 - 2  

which is clearly very large in most practical cases. 

2.2. Boundary conditions 
A t  large distances from the inclined surface we suppose that there is no bulk motion 
within the suspension and that the particle volume fraction is constant. Hence, the 
conditions 

u = o ,  p = o ,  q 5 = q 5 s  (2.13) 

At the inclined surface we invoke the no-slip boundary condition and also require 
apply. 

that, a t  steady state, the particle flux normal to the surface should vanish. Thus 

u = 0, (p5-sp)." D g = 0, 
9 

(2.14) 

where n is a unit vector normal to the surface. It is evident that, for a steady state 
to exist, the flux of settling particles must be balanced by a diffusive flux which is 
induced by the shearing motion of the suspension in the vicinity of the surface. 

3. A two-dimensional case 
In the two-dimensional geometry depicted in figure 1 we consider sedimentation 

over an inclined plate and neglect any changes normal to the (x,y)-plane. We first 
seek to simplify (2.10) and (2.11) by taking advantage of the fact that E + 1 in all 
cases of practical interest. Clearly, (2.10) is dominated by the buoyancy term which, 
in view of (2.12), is O(E-') and which must be balanced, at least in the vicinity of the 
solid wall, by viscous stresses. In  addition, the convection and diffusive terms of 
(2.11) are of comparable magnitude. It is then easy to show that the appropriate 
scaling transformation is 

Y = d y ,  u = &,, v = uy, P = e2p, with E = a / L  + 1, (3.1) 

where u, and uy denote the velocity components in the x- and y-directions 
respectively. I n  view of the small value of e, these transformations imply that, in the 
gravity-induced flow, the velocity components along the inclined surface dominate 
those perpendicular to it and that changes across the layer adjacent to the inclined 
surface are much steeper than those along it,. Consequently, to a first approximation, 
the diffusivity is proportional to the component I duldy I of the velocity gradient 
tensor, and hence, in view of (3.1) and (2.5), we obtain for the particle mass balance 
equation 
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while, on using (2.2), we have for the components of (2.10) 
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and 

au a 
= E($-$,)sina+- 

ay 

-- - O ( 4 ) .  ap 
ay 

The condition at Y = 0, i.e. the zero flux requirement in (2.14), becomes 

(3.3) 

(3.4) 

(3.5) 

Equations (3.2) and (3.3) imply that the gravity-induced flow and the changes in the 
particle volume fraction occur within a thin boundary layer which exists in the 
vicinity of the inclined surface. Thus, if a steady state is to prevail, the particles that 
enter this layer from the bulk of the suspension must be carried downstream by the 
velocity component parallel to the surface following their redistribution due to shear- 
induced diffusion. The motion of the layer itself is driven by the x-component of the 
body force term in (3.3) and is opposed by the viscous shear stress. The relative 
importance of the inertial terms in (3.3) depends on the magnitude of By($)  ei. 

There is of course an obvious analogy between (3.2) and (3.3) and the corresponding 
equations for the natural convection of a viscous fluid near a heated inclined surface. 
Yet, fundamental differences appear in the boundary conditions. Specifically, in the 
thermally driven natural convection, the source of the density variation, i.e. the heat 
flux, penetrates the layer from the solid boundary side, and from there the heat 
propagates into the fluid by diffusion. It follows that the fluid motion can influence 
and regulate this heat flux through temperature gradients at the solid surface. In the 
present case, however, the source for the convection is located far from the inclined 
plate in a relatively quiescent fluid and, furthermore, the steady particle flux entering 
the boundary layer is entirely dominated by sedimentation and is not affected by 
diffusion. 

To further simplify the analysis consider the case Ry($) 6% 6 1. The analogy to 
boundary-layer theory for thermal natural convection suggests then that, in the 
present case, the boundary layer could be viewed as consisting of two overlapping 
regions. In the region adjacent to the solid surface, which we shall term the viscous 
layer, inertia effects can be neglected and the gravitational force is balanced by the 
viscous stresses. Also, the longitudinal velocity component increases monotonically 
from zero a t  the solid surface to its maximum value at the edge of this region within 
which the entire variation of the particle volume fraction is confined. Separating the 
viscous layer and the quiescent suspension is a second sublayer in which the particle 
volume fraction has a constant value, i.e. $ = $s, and the momentum equation there 
reduces to a balance between the viscous and the inertia terms. But  since the flow 
within this layer does not affect that  in the sediment when c < 1, its structure will 
not be considered any further. 

The two layers must satisfy matching conditions which, in this case, require that 
the velocity components and the particle flux be continuous across their common 
boundary. Moreover, since the longitudinal velocity components have identical 
scalings within these two regions, it follows from (3.1) and (3.3) that the thickness of 
the second layer relative to L is of the order of R - ~ t . ~ .  
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4. A similarity solution 
As discussed above, when RE: 4 1,  the inertia terms become negligible within the 

viscous layer. In  addition, though, since the system of equations (3.2)-(3.5) together 
with the remaining boundary conditions no longer contains a characteristic 
lengthscale, it is natural to anticipate the existence of a similarity solution. Indeed 
it is easy to show that the appropriate transformation is 

u = X W ( ’ I )  cosa, r$ = $(q), (4.1) 

where ‘I = Y/&, (4.2) 

the prime denoting differentiation with respect to 7. The use of the continuity 
equation readily yields u = ((+@”)-F) cos a, and substituting the above in (3.3) and 
(3.2) results in 

(h($)F”)’+g(r$-$s)tana = 0 (4.3) 

and (4.4) 

The boundary conditions for (4.3) are 

F = F = O  a t  r = O  (4.5) 

and F = O  a t  ’I=&, (4.6) 

with 7 = S denoting the outer edge of the viscous layer where the matching 
conditions with the outer region should apply. On the other hand, the condition for 
the particle balance a t  the inclined surface becomes 

p($) IF”/ r$’+.f$ = 0 at 7 = 0, (4.7) 

while a t  7 = 6 we require that the flux of particles leaving the inertia sublayer should 
equal that entering the viscous layer. 

The flux matching condition deserves some further attention. Since the equation 
for the lines 7 = constant is 2 1  

y-s’Ix~ = 0, (4.8) 

the components of a unit vector n normal to these lines are 

Hence, in terms of the boundary-layer variables, the component of the velocity 
normal to 7 = constant, except near the origin x = 0, is -F cosa and the total 
particle flux across these lines equals - (F +f($)) $ cosa. Let the solids volume 
fraction in the viscous layer just below 7 = 6 be denoted by $8 .  Since the volume 
fraction above 7 = 6 is $ = $s, the continuity condition of particle flux across 7 = 6 
attains the form 

r$8(4+.f($B)) = $ S ( 4 + . f ( $ S ) L  (4.10) 

with FB denoting the value of F at  7 = 6. Note that the left-hand side of (4.10) does 
not contain a term accounting for the diffusive flux of particles because, in view of 
(4.6), the coefficient of shear-induced diffusion vanishes a t  7 = 6. 

= r$s. However, i t  is not too difficult to show that 
for any choice of the viscous-layer thickness 6 (finite or infinite) the system of 
equations (4.3) and (4.4) subject to (4.5)-(4.7) and (4.10) with = r$s does not have 

An obvious solution to (4.10) is 
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FIGURE 2. The jump in the particle volume fraction across the edge of the viscous boundary 
layer. The dotted curve denotes the boundary within which a steady-state solution exists. 

a solution with q5 everywhere finite. In other words (4.4) and the condition (4.6) are 
not compatible when q5, = q5s for any choice of 6. A different solution to the flux 
continuity condition (4.10) must therefore be considered. 

The existence of a dual solution to (4.10) is quite easily perceived if one notices 
that, when F, is not too large, the curve $(Fa+ f(q5)) has a maximum in the physically 
permitted range of q5 since f(q5) is a monotonically decreasing function of q5. For 
example, in the absence of a bulk flow (F, = 0), it is clear that  the zero flux condition 
is satisfied for both q5 = 0 and q5 = #I~, where q5* denotes the zero of f(q5) ,  and that 
i t  is possible to have any given finite flux below some maximum at two different 
volume fractions. We conclude therefore that a jump in part,icle volume fraction 
across the viscous-layer boundary, ?,I = 6, is permissible. 

To determine the value of this jump, we next examine (4.3) and (4.4) as 7 --f 6 from 
below. We find that, in view of (4.6), 

(4.1 1) 

But since q5'+ 0, for otherwise q5 = q5, throughout the sediment layer thereby 
violating (4.7), we conclude that the term in brackets should vanish. 

The conditions which allow us to compute S then become 

F" = 0, q5 = q58, F = Fa a t  ?,I = 6, (4.12) 

where q5, and F, are uniquely determined by the simultaneous solution of (4.10) and 
(4.11). Figure 2 shows the jump in q5 across the interface between the viscous layer and 
the layer above it for various angles of inclination. Thcse values are calculated for a 
particular choice of the effective properties, A($ ) ,  f(q5) and /3(q5), which will be 
described in $5. An interesting observation is that ,  for a suspension with low initial 
volume fraction, the minimum concentration within the sediment layer, i.e. the 
concentration $$, is already relatively high and close to q5m, the maximum permissible 
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value of $ for all angles of inclination a. At higher values of $s, $$ is found to  decrease 
with decreasing a.  This, as we shall describe in the next section, has important 
implications with respect to the velocity profile and the layer thickness in these cases. 

5. Results and discussion 
A solution to (4.3) and (4.4) subject to (4.5), (4.7) and (4.12) requires the use of 

explicit expressions for the effective properties A ( $ ) ,  f($) and /3($). Following 
Leighton & Acrivos (1986) we assume for the diffusivity the expression 

P($) = i$*( 1 + & 8 . 8 @ ) ,  (5.1) 

which is an empirical approximation fitted to the diffusivity data measured by 
Leighton (1985). The relative effective viscosity is similarly assumed to be of the 
form (Leighton & Acrivos 19876): 

(5.2) 

where $m indicates the maximum possible particle volume fraction in the flowing 
suspension. Finally, the sedimentation hindrance function is obtained by supposing 
that a particle settles in an effective homogeneous medium with viscosity y, A ( $ )  and 
density pf ~ ( 4 ) .  Thus, the correction factor becomes 

(5.3) 

which, although i t  does not conform to Batchelor's (1972) exact result f - 1 -  
6.55$+0($*), is quite adequate for our purpose. Of course the precise forms 
selected for these effective parameters only affects the quantitative but not the 
qualitative features of the results. 

A numerical solution of the fifth-order nonlinear boundary-value problem involves 
either iterations on a straightforward matrix inversion of a linearized problem which 
may not always converge, or the use of a shooting-method algorithm which requires 
thc guess of three conditions and thus becomes a 3-parameter-space search. In  both 
cases the calculations are tedious and therefore of limited usefulness, specifically 
considering the approximate nature of our model. On the other hand, one notices 
that $ and F are well-behaved monotonic functions of q which have smooth second 
and third derivatives, respectively, and which may well be approximated by the use 
of suitable polynomials. Hence, an approximate solution may be constructed 
reminiscent of the Karman-Pohlhausen technique (Schlichting 1968) for classical 
boundary-layer flows. This approximation is described in the Appendix. We note 
that results which we obtained by direct numerical integration of the equations and 
by the means of the approximate method just mentioned were found to differ only 
very slightly over the entire range of the physical parameters considered. 

Figure 3 depicts the particle volume fraction at the solid boundary, $,,, and that 
at the edge of the viscous layer, $8 ,  as functions of $s, the volume fraction in the 
bulk suspension, for various angles of inclination a. Figure 4 shows the corresponding 
concentration profiles for a = 45" and for several values of 9,. It is seen that, when 
q5s is small (9, = 0.02), the concentration of particles throughout the entire layer has 
a high value whereas, when $s is large ($, = 0.4), $ is large almost everywhere except 
near q = 6 where i t  equals the corresponding value of $$. Calculations show that in 
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FIGURE 3. Particle volume fraction a t  the edge of the viscous layer, and a t  the inclined 
surface, $,,, as a function of 4, for various angles of inclination a. 

these two extreme cases the average effective viscosity across the layer is over two 
orders of magnitude larger than that for the intermediate regimes ($s = 0.2 and 0.3). 
Thus, according to our analysis, the sediment layer would be expected to flow under 
its own gravitational force more readily in the intermediate cases than in the extreme 
situations where a considerable body of heavy sediment is needed to maintain a flow 
in the presence of the high viscous resistance. 

Indeed, the profiles of F ,  shown in figure 5 indicate that the longitudinal velocity 
along the edge of the sediment layer attains a maximum for some intermediate value 
of qbs and diminishes when $s becomes larger or smaller. Similarly, the boundary- 
layer thickness parameter 6, which remains fairly constant over most of the 
permissible range of $s and especially at large angles of inclination, increases sharply 
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for a = 45'. 

when Cp, becomes large or small (figure 6).  An estimate for S, in cases when the 
concentration within the sediment layer approaches its maximum permissible valuc 
$rn, can be obtained by expanding (4.3) with @ = $,,, -9 and integrating once using 
the condition F = 0 a t  7 = 6. This results in 

which when integrated twice, using the estimate @ < $6 = $m - 
F = F = 0 at 7 = 0 and F = Fa at q = 6, yields 

and the conditions 

(5 .5)  

Finally, expanding (4.10) and (4.1 1) in a similar manner and substituting for F8yialds 
the bound 

which predicts that, for any angle of inclination a < in, the sediment-layer thickness 
should become very large when $,+4, and when 

Figure 7 shows the domain of existence of a steady-state boundary-layer solution 
as a function of the important physical parameters $, and a .  It is seen that a steady 
motion can exist only above a minimum angle of inclination approximately equal to 
15" and that, for CI larger than this minimum, the domain of steady solutions lies 
above a curve along which 4b0, the particle concentration in the sediment layer 
adjacent to the inclined solid surface, is at its maximum possible value. A t  this 
concentration the effective viscosity becomes infinite and all motion ceases, including 
sedimentation. The shape of the curve #,, = q5m further underscores the fact that, 
according to our analysis, a steady solution cannot exist when 9, + 0 or as 4, + &,. 
This last result is understandable because, although the high particle volume fraction 

i.e. when # , + O .  
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in the sediment layer increases the particle diffusivity, the augmented viscosity 
reduces the effective shear rate and thereby the diffusion coefficient. On the other 
hand, the predicted rapid increase in S as #s + 0 is puzzling and may well reflect the 
limitations of the model on which the present analysis is based. 

There are of course several limitations to our model which we wish to briefly 
indicate. First, our analysis is based on a continuum representation according to 
which the sediment is viewed as an effective Newtonian fluid having an effective 
viscosity that depends only on the local volume fraction of the solids. Assuredly this 
is a gross simplification because there is ample evidence that concentrated 
suspensions exhibit a non-Newtonian behaviour as # + &. Moreover, even if the 
Newtonian description were to be retained, i t  is conceivable that the quantitative 
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FIGURE 6. The viscous-layer thickness parameter, S, as a function of q5s and a. 
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FIGURE 7 .  The domain of existence of a self-sustained steady-state motion of the sediment 
layer. 

and qualitative features of our model would be significantly affected if (5.2) and (5.3) 
were replaced by different expressions. Finally, owing to the finite size of the particles 
comprising the suspension, it would be more logical to replace the no-slip condition 
in (2.14) by a more general boundary condition involving a slip bulk velocity 
proportional to the local shear rate in the fluid adjacent to the wall, or alternatively 
by using a position-dependent expression for the effective viscosity such that it 
equals the viscosity of the pure liquid as the solid surface is approached. These and 
other refinements of the model deserve further study. 

6 FLM 212 
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Appendix 
An approximat,ion for the velocity and concentration profiles can be found using 

the Karman-Pohlhausen integral method (Schlichting 1968). Assume that F and $ 
have the polynomial form 

F = C , C 2 + C , t 3  (A 1) 

and $-$s = C,+C,C+C5C2, (A 2 )  

with 6 = 718. 

boundary layer and using (4.6) and (4.7) yields 
Note that F satisfies (4.5). Integrating equations (4.3) and (4.4) across the 

and 

which together with (4.7) and (4.12) constit,ut,e the approximated set of equations for 
the coefficients C, to C5 and the boundary-layer thickness 6. 

The explicit expression for 6 is 

where is determined by the implicit equation 

A comparison of the results obtained by this approximation with those calculated by 
a direct numerical integration of (4.3) and (4.4) subject to (4.5), (4.7) and (4.12), 
shows that for large q&, i.e. when the jump a t  the layer edge diminishes, the two sets 
agree to within a few percent. As $s is reduced. the difference furt,her diminishes until 
it effectively vanishes as $s + 0. 
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